
Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
TechnologyRefactoring Improving The Design Of
Existing Code Addison Wesley Object
Technology |
ed4374a70e09aa34147d16636651e6fc
Release It!DebuggingRefactoring Object-Oriented
FrameworksRefactoringWorking Effectively with Legacy
CodeRefactoringRefactoring: Improving The Design Of Existing CodeThe
Software CraftsmanRefactoringRefactoring JavaScriptPair Programming
IlluminatedRefactoringAgile Modeling with UMLThe Pragmatic
ProgrammerThe Rust Programming Language (Covers Rust
2018)PrefactoringImplementation PatternsRefactoring: Improving the
Design of Existing CodeService Design PatternsRefactoring to
PatternsRefactoring in RubyBeyond Software ArchitecturePro PHP
RefactoringThe Clean CoderDomain-Specific LanguagesRefactoring
HTMLRefactoring DatabasesRefactoring HTMLUML DistilledPython
WorkoutPragmatic Thinking and LearningRefactoringxUnit Test
PatternsRefactoring WorkbookTest-Driven iOS
DevelopmentFowlerRefactoring for Software Design SmellsAnalysis
PatternsThe Object-Oriented Thought ProcessThe Robert C. Martin Clean
Code Collection (Collection)

This innovative book recognizes the need within the object-oriented
community for a book that goes beyond the tools and techniques of the
typical methodology book. In Analysis Patterns: Reusable Object Models,
Martin Fowler focuses on the end result of object-oriented analysis and
design—the models themselves. He shares with you his wealth of object
modeling experience and his keen eye for identifying repeating problems
and transforming them into reusable models. Analysis Patterns provides a
catalogue of patterns that have emerged in a wide range of domains
including trading, measurement, accounting and organizational
relationships. Recognizing that conceptual patterns cannot exist in isolation,
the author also presents a series of "support patterns" that discuss how to
turn conceptual models into software that in turn fits into an architecture for
a large information system. Included in each pattern is the reasoning behind
their design, rules for when they should and should not be used, and tips for
implementation. The examples presented in this book comprise a cookbook

Page 1/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologyof useful models and insight into the skill of reuse that will improve analysis,
modeling and implementation.

& Most software practitioners deal with inherited code; this book teaches
them how to optimize it & & Workbook approach facilitates the learning
process & & Helps you identify where problems in a software application
exist or are likely to exist

Like any other software system, Web sites gradually accumulate “cruft” over
time. They slow down. Links break. Security and compatibility problems
mysteriously appear. New features don’t integrate seamlessly. Things just
don’t work as well. In an ideal world, you’d rebuild from scratch. But you
can’t: there’s no time or money for that. Fortunately, there’s a solution: You
can refactor your Web code using easy, proven techniques, tools, and
recipes adapted from the world of software development. In Refactoring
HTML, Elliotte Rusty Harold explains how to use refactoring to improve
virtually any Web site or application. Writing for programmers and non-
programmers alike, Harold shows how to refactor for better reliability,
performance, usability, security, accessibility, compatibility, and even
search engine placement. Step by step, he shows how to migrate obsolete
code to today’s stable Web standards, including XHTML, CSS, and
REST—and eliminate chronic problems like presentation-based markup,
stateful applications, and “tag soup.” The book’s extensive catalog of
detailed refactorings and practical “recipes for success” are organized to
help you find specific solutions fast, and get maximum benefit for minimum
effort. Using this book, you can quickly improve site performance now—and
make your site far easier to enhance, maintain, and scale for years to come.
Topics covered include • Recognizing the “smells” of Web code that should
be refactored • Transforming old HTML into well-formed, valid XHTML, one
step at a time • Modernizing existing layouts with CSS • Updating old Web
applications: replacing POST with GET, replacing old contact forms, and
refactoring JavaScript • Systematically refactoring content and links •
Restructuring sites without changing the URLs your users rely upon This
book will be an indispensable resource for Web designers, developers,
project managers, and anyone who maintains or updates existing sites. It
will be especially helpful to Web professionals who learned HTML years
ago, and want to refresh their knowledge with today’s standards-compliant
best practices. This book will be an indispensable resource for Web
designers, developers, project managers, and anyone who maintains or
updates existing sites. It will be especially helpful to Web professionals who

Page 2/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologylearned HTML years ago, and want to refresh their knowledge with today’s
standards-compliant best practices.

The Robert C. Martin Clean Code Collection consists of two bestselling
eBooks: Clean Code: A Handbook of Agile Software Craftmanship The
Clean Coder: A Code of Conduct for Professional Programmers In Clean
Code, legendary software expert Robert C. Martin has teamed up with his
colleagues from Object Mentor to distill their best agile practice of cleaning
code “on the fly” into a book that will instill within you the values of a
software craftsman and make you a better programmer--but only if you work
at it. You will be challenged to think about what’s right about that code and
what’s wrong with it. More important, you will be challenged to reassess
your professional values and your commitment to your craft. In The Clean
Coder, Martin introduces the disciplines, techniques, tools, and practices of
true software craftsmanship. This book is packed with practical
advice--about everything from estimating and coding to refactoring and
testing. It covers much more than technique: It is about attitude. Martin
shows how to approach software development with honor, self-respect, and
pride; work well and work clean; communicate and estimate faithfully; face
difficult decisions with clarity and honesty; and understand that deep
knowledge comes with a responsibility to act. Readers of this collection will
come away understanding How to tell the difference between good and bad
code How to write good code and how to transform bad code into good
code How to create good names, good functions, good objects, and good
classes How to format code for maximum readability How to implement
complete error handling without obscuring code logic How to unit test and
practice test-driven development What it means to behave as a true
software craftsman How to deal with conflict, tight schedules, and
unreasonable managers How to get into the flow of coding and get past
writer’s block How to handle unrelenting pressure and avoid burnout How to
combine enduring attitudes with new development paradigms How to
manage your time and avoid blind alleys, marshes, bogs, and swamps How
to foster environments where programmers and teams can thrive When to
say “No”--and how to say it When to say “Yes”--and what yes really means

Automated testing is a cornerstone of agile development. An effective
testing strategy will deliver new functionality more aggressively, accelerate
user feedback, and improve quality. However, for many developers,
creating effective automated tests is a unique and unfamiliar challenge.
xUnit Test Patterns is the definitive guide to writing automated tests using

Page 3/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
TechnologyxUnit, the most popular unit testing framework in use today. Agile coach and
test automation expert Gerard Meszaros describes 68 proven patterns for
making tests easier to write, understand, and maintain. He then shows you
how to make them more robust and repeatable--and far more cost-effective.
Loaded with information, this book feels like three books in one. The first
part is a detailed tutorial on test automation that covers everything from test
strategy to in-depth test coding. The second part, a catalog of 18 frequently
encountered "test smells," provides trouble-shooting guidelines to help you
determine the root cause of problems and the most applicable patterns. The
third part contains detailed descriptions of each pattern, including
refactoring instructions illustrated by extensive code samples in multiple
programming languages.

When carefully selected and used, Domain-Specific Languages (DSLs) may
simplify complex code, promote effective communication with customers,
improve productivity, and unclog development bottlenecks. In Domain-
Specific Languages , noted software development expert Martin Fowler first
provides the information software professionals need to decide if and when
to utilize DSLs. Then, where DSLs prove suitable, Fowler presents effective
techniques for building them, and guides software engineers in choosing the
right approaches for their applications. This book’s techniques may be
utilized with most modern object-oriented languages; the author provides
numerous examples in Java and C#, as well as selected examples in Ruby.
Wherever possible, chapters are organized to be self-standing, and most
reference topics are presented in a familiar patterns format. Armed with this
wide-ranging book, developers will have the knowledge they need to make
important decisions about DSLs—and, where appropriate, gain the
significant technical and business benefits they offer. The topics covered
include: How DSLs compare to frameworks and libraries, and when those
alternatives are sufficient Using parsers and parser generators, and parsing
external DSLs Understanding, comparing, and choosing DSL language
constructs Determining whether to use code generation, and comparing
code generation strategies Previewing new language workbench tools for
creating DSLs

A complete practitioner's catalog of proven domain services design
solutions that can help any organization leverage SOA's full benefits *
*Provides a vocabulary of proven SOA design solutions, with concrete
examples and code that is easy for architects to adapt and implement. *By
Rob Daigneau, one of the industry's leading experts in complex systems

Page 4/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologyintegration. *Helps architects and IT leaders accurately set stakeholder
expectations for major SOA initiatives. Service-oriented architectures are
typically called upon to deliver two general categories of services: enterprise
services and domain services. Enterprise services are essentially composite
services that typically leverage technologies such as message-oriented
middleware. Domain services are the building blocks these composites
depend upon. Each service category is best served by a distinct set of
design solutions. This is the first book to systematically identify and explain
best practice patterns for domain services. Rob Daigneau expands upon the
Service Layer concept (covered expertly by Fowler in Patterns of Enterprise
Application Architecture ) domain services can be used with Enterprise
Integration Patterns (made famous by Hohpe and Woolf). Daigneau begins
by reviewing SOA concepts, illuminating the distinctions between enterprise
and domain services, and identifying key relationships between domain
services and other pattern groups. Next, he introduces each essential
pattern for creating and delivering domain services, providing a vocabulary
of design solutions that architects and other IT professionals can implement
by referencing and adapting the concrete examples he supplies.

More than 300,000 developers have benefited from past editions of UML
Distilled . This third edition is the best resource for quick, no-nonsense
insights into understanding and using UML 2.0 and prior versions of the
UML. Some readers will want to quickly get up to speed with the UML 2.0
and learn the essentials of the UML. Others will use this book as a handy,
quick reference to the most common parts of the UML. The author delivers
on both of these promises in a short, concise, and focused presentation.
This book describes all the major UML diagram types, what they're used for,
and the basic notation involved in creating and deciphering them. These
diagrams include class, sequence, object, package, deployment, use case,
state machine, activity, communication, composite structure, component,
interaction overview, and timing diagrams. The examples are clear and the
explanations cut to the fundamental design logic. Includes a quick reference
to the most useful parts of the UML notation and a useful summary of
diagram types that were added to the UML 2.0. If you are like most
developers, you don't have time to keep up with all the new innovations in
software engineering. This new edition of Fowler's classic work gets you
acquainted with some of the best thinking about efficient object-oriented
software design using the UML--in a convenient format that will be essential
to anyone who designs software professionally.

Page 5/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technology"After many decades - and even more methodologies - software projects are
still failing. Why? Managers see software development as a production line.
Companies don't know how to manage software projects and hire good
developers. Many developers still behave like factory workers, providing
terrible service to their employers and clients. Agile was a big step forward,
but not enough. What's missing? The right mindset - for both developers
and their employers. As developers worldwide are recognizing, the right
mindset is craftsmanship Mancuso explains what craftsmanship means to
the developer and his or her organization, and shows how to live it every day
in your real-world development environment. Mancuso shows how software
craftsmanship fits with and helps you improve upon best-practice technical
disciplines such as agile and lean, taking all your development projects to
the next level. You'll learn how to change the disastrous perception that
software developers are the same as factory workers, and that software
projects can be run like factories. By placing greater professionalism,
technical excellence, and customer satisfaction at the heart of what you do,
you won't just deliver more value to everyone involved: you'll be happier and
more fulfilled doing it"--Publisher's description.

This text aims to help all members of the development team make the
correct nuts-and-bolts architecture decisions that ensure project success.

“One of the most significant books in my life.” –Obie Fernandez, Author,
The Rails Way “Twenty years ago, the first edition of The Pragmatic
Programmer completely changed the trajectory of my career. This new
edition could do the same for yours.” –Mike Cohn, Author of Succeeding
with Agile, Agile Estimating and Planning, and User Stories Applied “. . .
filled with practical advice, both technical and professional, that will serve
you and your projects well for years to come.” –Andrea Goulet, CEO,
Corgibytes, Founder, LegacyCode.Rocks “. . . lightning does strike twice,
and this book is proof.” –VM (Vicky) Brasseur, Director of Open Source
Strategy, Juniper Networks The Pragmatic Programmer is one of those rare
tech books you’ll read, re-read, and read again over the years. Whether
you’re new to the field or an experienced practitioner, you’ll come away with
fresh insights each and every time. Dave Thomas and Andy Hunt wrote the
first edition of this influential book in 1999 to help their clients create better
software and rediscover the joy of coding. These lessons have helped a
generation of programmers examine the very essence of software
development, independent of any particular language, framework, or

Page 6/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologymethodology, and the Pragmatic philosophy has spawned hundreds of
books, screencasts, and audio books, as well as thousands of careers and
success stories. Now, twenty years later, this new edition re-examines what
it means to be a modern programmer. Topics range from personal
responsibility and career development to architectural techniques for
keeping your code flexible and easy to adapt and reuse. Read this book,
and you’ll learn how to: Fight software rot Learn continuously Avoid the trap
of duplicating knowledge Write flexible, dynamic, and adaptable code
Harness the power of basic tools Avoid programming by coincidence Learn
real requirements Solve the underlying problems of concurrent code Guard
against security vulnerabilities Build teams of Pragmatic Programmers Take
responsibility for your work and career Test ruthlessly and effectively,
including property-based testing Implement the Pragmatic Starter Kit
Delight your users Written as a series of self-contained sections and filled
with classic and fresh anecdotes, thoughtful examples, and interesting
analogies, The Pragmatic Programmer illustrates the best approaches and
major pitfalls of many different aspects of software development. Whether
you’re a new coder, an experienced programmer, or a manager responsible
for software projects, use these lessons daily, and you’ll quickly see
improvements in personal productivity, accuracy, and job satisfaction. You’ll
learn skills and develop habits and attitudes that form the foundation for long-
term success in your career. You’ll become a Pragmatic Programmer.
Register your book for convenient access to downloads, updates, and/or
corrections as they become available. See inside book for details.

Fully Revised and Updated-Includes New Refactorings and Code Examples
"Any fool can write code that a computer can understand. Good
programmers write code that humans can understand."--M. Fowler (1999)
For more than twenty years, experienced programmers worldwide have
relied on Martin Fowler's Refactoring to improve the design of existing code
and to enhance software maintainability, as well as to make existing code
easier to understand. This eagerly awaited new edition has been fully
updated to reflect crucial changes in the programming landscape.
Refactoring, Second Edition, features an updated catalog of refactorings
and includes JavaScript code examples, as well as new functional
examples that demonstrate refactoring without classes. Like the original,
this edition explains what refactoring is; why you should refactor; how to
recognize code that needs refactoring; and how to actually do it
successfully, no matter what language you use. Understand the process
and general principles of refactoring Quickly apply useful refactorings to

Page 7/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologymake a program easier to comprehend and change Recognize "bad smells"
in code that signal opportunities to refactor Explore the refactorings, each
with explanations, motivation, mechanics, and simple examples Build solid
tests for your refactorings Recognize tradeoffs and obstacles to refactoring
Includes free access to the canonical web edition, with even more
refactoring resources. (See inside the book for details about how to access
the web edition.)

A single dramatic software failure can cost a company millions of dollars -
but can be avoided with simple changes to design and architecture. This
new edition of the best-selling industry standard shows you how to create
systems that run longer, with fewer failures, and recover better when bad
things happen. New coverage includes DevOps, microservices, and cloud-
native architecture. Stability antipatterns have grown to include systemic
problems in large-scale systems. This is a must-have pragmatic guide to
engineering for production systems. If you're a software developer, and you
don't want to get alerts every night for the rest of your life, help is here. With
a combination of case studies about huge losses - lost revenue, lost
reputation, lost time, lost opportunity - and practical, down-to-earth advice
that was all gained through painful experience, this book helps you avoid the
pitfalls that cost companies millions of dollars in downtime and reputation.
Eighty percent of project life-cycle cost is in production, yet few books
address this topic. This updated edition deals with the production of today's
systems - larger, more complex, and heavily virtualized - and includes
information on chaos engineering, the discipline of applying randomness
and deliberate stress to reveal systematic problems. Build systems that
survive the real world, avoid downtime, implement zero-downtime upgrades
and continuous delivery, and make cloud-native applications resilient.
Examine ways to architect, design, and build software - particularly
distributed systems - that stands up to the typhoon winds of a flash mob, a
Slashdotting, or a link on Reddit. Take a hard look at software that failed the
test and find ways to make sure your software survives. To skip the pain
and get the experienceget this book.

As iOS apps become increasingly complex and business-critical, iOS
developers must ensure consistently superior code quality. This means
adopting best practices for creating and testing iOS apps. Test-Driven
Development (TDD) is one of the most powerful of these best practices.
Test-Driven iOS Development is the first book 100% focused on helping you
successfully implement TDD and unit testing in an iOS environment. Long-

Page 8/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologytime iOS/Mac developer Graham Lee helps you rapidly integrate TDD into
your existing processes using Apple’s Xcode 4 and the OCUnit unit testing
framework. He guides you through constructing an entire Objective-C iOS
app in a test-driven manner, from initial specification to functional product.
Lee also introduces powerful patterns for applying TDD in iOS development,
and previews powerful automated testing capabilities that will soon arrive on
the iOS platform. Coverage includes Understanding the purpose, benefits,
and costs of unit testing in iOS environments Mastering the principles of
TDD, and applying them in areas from app design to refactoring Writing
usable, readable, and repeatable iOS unit tests Using OCUnit to set up your
Xcode project for TDD Using domain analysis to identify the classes and
interactions your app needs, and designing it accordingly Considering third-
party tools for iOS unit testing Building networking code in a test-driven
manner Automating testing of view controller code that interacts with users
Designing to interfaces, not implementations Testing concurrent code that
typically runs in the background Applying TDD to existing apps Preparing
for Behavior Driven Development (BDD) The only iOS-specific guide to TDD
and unit testing, Test-Driven iOS Development covers both essential
concepts and practical implementation.

The official book on the Rust programming language, written by the Rust
development team at the Mozilla Foundation, fully updated for Rust 2018.
The Rust Programming Language is the official book on Rust: an open
source systems programming language that helps you write faster, more
reliable software. Rust offers control over low-level details (such as memory
usage) in combination with high-level ergonomics, eliminating the hassle
traditionally associated with low-level languages. The authors of The Rust
Programming Language, members of the Rust Core Team, share their
knowledge and experience to show you how to take full advantage of Rust's
features--from installation to creating robust and scalable programs. You'll
begin with basics like creating functions, choosing data types, and binding
variables and then move on to more advanced concepts, such as: •
Ownership and borrowing, lifetimes, and traits • Using Rust's memory safety
guarantees to build fast, safe programs • Testing, error handling, and
effective refactoring • Generics, smart pointers, multithreading, trait objects,
and advanced pattern matching • Using Cargo, Rust's built-in package
manager, to build, test, and document your code and manage
dependencies • How best to use Rust's advanced compiler with compiler-
led programming techniques You'll find plenty of code examples throughout
the book, as well as three chapters dedicated to building complete projects

Page 9/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologyto test your learning: a number guessing game, a Rust implementation of a
command line tool, and a multithreaded server. New to this edition: An
extended section on Rust macros, an expanded chapter on modules, and
appendixes on Rust development tools and editions.

Many businesses and organizations depend on older high-value PHP
software that risks abandonment because it is impossible to maintain. The
reasons for this may be that the software is not well designed; there is only
one developer (the one who created the system) who can develop it
because he didn’t use common design patterns and documentation; or the
code is procedural, not object-oriented. With this book, you’ll learn to identify
problem code and refactor it to create more effective applications using test-
driven design.

Written as instruction for pair programming newbies, with practical
improvement tips for those experienced with the concept, this guide
explores the operational aspects and unique fundamentals of pair
programming; information such as furniture set-up, pair rotation, and
weeding out bad pairs.

This book focuses on the methodological treatment of UML/P and
addresses three core topics of model-based software development: code
generation, the systematic testing of programs using a model-based
definition of test cases, and the evolutionary refactoring and transformation
of models. For each of these topics, it first details the foundational concepts
and techniques, and then presents their application with UML/P. This
separation between basic principles and applications makes the content
more accessible and allows the reader to transfer this knowledge directly to
other model-based approaches and languages. After an introduction to the
book and its primary goals in Chapter 1, Chapter 2 outlines an agile UML-
based approach using UML/P as the primary development language for
creating executable models, generating code from the models, designing
test cases, and planning iterative evolution through refactoring. In the
interest of completeness, Chapter 3 provides a brief summary of UML/P,
which is used throughout the book. Next, Chapters 4 and 5 discuss core
techniques for code generation, addressing the architecture of a code
generator and methods for controlling it, as well as the suitability of UML/P
notations for test or product code. Chapters 6 and 7 then discuss general
concepts for testing software as well as the special features which arise due
to the use of UML/P. Chapter 8 details test patterns to show how to use

Page 10/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
TechnologyUML/P diagrams to define test cases and emphasizes in particular the use
of functional tests for distributed and concurrent software systems. In
closing, Chapters 9 and 10 examine techniques for transforming models
and code and thus provide a solid foundation for refactoring as a type of
transformation that preserves semantics. Overall, this book will be of great
benefit for practical software development, for academic training in the field
of Software Engineering, and for research in the area of model-based
software development. Practitioners will learn how to use modern model-
based techniques to improve the production of code and thus significantly
increase quality. Students will find both important scientific basics as well as
direct applications of the techniques presented. And last but not least, the
book will offer scientists a comprehensive overview of the current state of
development in the three core topics it covers.

In 1994, Design Patterns changed the landscape of object-oriented
development by introducing classic solutions to recurring design problems.
In 1999, Refactoring revolutionized design by introducing an effective
process for improving code. With the highly anticipated Refactoring to
Patterns , Joshua Kerievsky has changed our approach to design by forever
uniting patterns with the evolutionary process of refactoring. This book
introduces the theory and practice of pattern-directed refactorings:
sequences of low-level refactorings that allow designers to safely move
designs to, towards, or away from pattern implementations. Using code from
real-world projects, Kerievsky documents the thinking and steps underlying
over two dozen pattern-based design transformations. Along the way he
offers insights into pattern differences and how to implement patterns in the
simplest possible ways. Coverage includes: A catalog of twenty-seven
pattern-directed refactorings, featuring real-world code examples
Descriptions of twelve design smells that indicate the need for this book’s
refactorings General information and new insights about patterns and
refactoring Detailed implementation mechanics: how low-level refactorings
are combined to implement high-level patterns Multiple ways to implement
the same pattern–and when to use each Practical ways to get started even if
you have little experience with patterns or refactoring Refactoring to
Patterns reflects three years of refinement and the insights of more than
sixty software engineering thought leaders in the global patterns,
refactoring, and agile development communities. Whether you’re focused on
legacy or “greenfield” development, this book will make you a better
software designer by helping you learn how to make important design
changes safely and effectively.

Page 11/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
TechnologyHow often do you hear people say things like this? "Our JavaScript is a
mess, but we’re thinking about using [framework of the month]." Like it or
not, JavaScript is not going away. No matter what framework or ”compiles-
to-js” language or library you use, bugs and performance concerns will
always be an issue if the underlying quality of your JavaScript is poor.
Rewrites, including porting to the framework of the month, are terribly
expensive and unpredictable. The bugs won’t magically go away, and can
happily reproduce themselves in a new context. To complicate things
further, features will get dropped, at least temporarily. The other popular
method of fixing your JS is playing “JavaScript Jenga,” where each
developer slowly and carefully takes their best guess at how the out-of-
control system can be altered to allow for new features, hoping that this
doesn’t bring the whole stack of blocks down. This book provides clear
guidance on how best to avoid these pathological approaches to writing
JavaScript: Recognize you have a problem with your JavaScript quality.
Forgive the code you have now, and the developers who made it. Learn
repeatable, memorable, and time-saving refactoring techniques. Apply
these techniques as you work, fixing things along the way. Internalize these
techniques, and avoid writing as much problematic code to begin with. Bad
code doesn’t have to stay that way. And making it better doesn’t have to be
intimidating or unreasonably expensive.

Get more out of your legacy systems: more performance, functionality,
reliability, and manageability Is your code easy to change? Can you get
nearly instantaneous feedback when you do change it? Do you understand
it? If the answer to any of these questions is no, you have legacy code, and
it is draining time and money away from your development efforts. In this
book, Michael Feathers offers start-to-finish strategies for working more
effectively with large, untested legacy code bases. This book draws on
material Michael created for his renowned Object Mentor seminars:
techniques Michael has used in mentoring to help hundreds of developers,
technical managers, and testers bring their legacy systems under control.
The topics covered include Understanding the mechanics of software
change: adding features, fixing bugs, improving design, optimizing
performance Getting legacy code into a test harness Writing tests that
protect you against introducing new problems Techniques that can be used
with any language or platform—with examples in Java, C++, C, and C#
Accurately identifying where code changes need to be made Coping with
legacy systems that aren't object-oriented Handling applications that don't
seem to have any structure This book also includes a catalog of twenty-four

Page 12/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologydependency-breaking techniques that help you work with program elements
in isolation and make safer changes.

As the application of object technology--particularly the Java programming
language--has become commonplace, a new problem has emerged to
confront the software development community. Significant numbers of
poorly designed programs have been created by less-experienced
developers, resulting in applications that are inefficient and hard to maintain
and extend. Increasingly, software system professionals are discovering just
how difficult it is to work with these inherited, "non-optimal" applications. For
several years, expert-level object programmers have employed a growing
collection of techniques to improve the structural integrity and performance
of such existing software programs. Referred to as "refactoring," these
practices have remained in the domain of experts because no attempt has
been made to transcribe the lore into a form that all developers could use. .
.until now. In Refactoring: Improving the Design of Existing Code, renowned
object technology mentor Martin Fowler breaks new ground, demystifying
these master practices and demonstrating how software practitioners can
realize the significant benefits of this new process. With proper training a
skilled system designer can take a bad design and rework it into well-
designed, robust code. In this book, Martin Fowler shows you where
opportunities for refactoring typically can be found, and how to go about
reworking a bad design into a good one. Each refactoring step is
simple--seemingly too simple to be worth doing. Refactoring may involve
moving a field from one class to another, or pulling some code out of a
method to turn it into its own method, or even pushing some code up or
down a hierarchy. While these individual steps may seem elementary, the
cumulative effect of such small changes can radically improve the design.
Refactoring is a proven way to prevent software decay. In addition to
discussing the various techniques of refactoring, the author provides a
detailed catalog of more than seventy proven refactorings with helpful
pointers that teach you when to apply them; step-by-step instructions for
applying each refactoring; and an example illustrating how the refactoring
works. The illustrative examples are written in Java, but the ideas are
applicable to any object-oriented programming language.

Software Expert Kent Beck Presents a Catalog of Patterns Infinitely Useful
for Everyday Programming Great code doesn’t just function: it clearly and
consistently communicates your intentions, allowing other programmers to
understand your code, rely on it, and modify it with confidence. But great

Page 13/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologycode doesn’t just happen. It is the outcome of hundreds of small but critical
decisions programmers make every single day. Now, legendary software
innovator Kent Beck—known worldwide for creating Extreme Programming
and pioneering software patterns and test-driven development—focuses on
these critical decisions, unearthing powerful “implementation patterns” for
writing programs that are simpler, clearer, better organized, and more cost
effective. Beck collects 77 patterns for handling everyday programming
tasks and writing more readable code. This new collection of patterns
addresses many aspects of development, including class, state, behavior,
method, collections, frameworks, and more. He uses diagrams, stories,
examples, and essays to engage the reader as he illuminates the patterns.
You’ll find proven solutions for handling everything from naming variables to
checking exceptions.

Presents practical advice on the disciplines, techniques, tools, and
practices of computer programming and how to approach software
development with a sense of pride, honor, and self-respect.

The First Hands-On, Practical, All-Ruby Refactoring Workbook!
Refactoring—the art of improving the design of existing code—has taken
the world by storm. So has Ruby. Now, for the first time, there’s a
refactoring workbook designed from the ground up for the dynamic Ruby
language. Refactoring in Ruby gives you all the realistic, hands-on practice
you need to refactor Ruby code quickly and effectively. You’ll discover how
to recognize “code smells,” which signal opportunities for improvement, and
then perfect your program’s design one small, safe step at a time. The book
shows you when and how to refactor with both legacy code and during new
test-driven development, and walks you through real-world refactoring in
detail. The workbook concludes with several applications designed to help
practice refactoring in realistic domains, plus a handy code review checklist
you’ll refer to again and again. Along the way, you’ll learn powerful lessons
about designing higher quality Ruby software—lessons that will enable you
to experience the joy of writing consistently great code. Refactoring in Ruby
will help you Recognize why poor code design occurs, so you can prevent it
from occurring in your own code Master better design techniques that lead
to more efficient, reliable, and maintainable software Fix code that’s too
long, large, or difficult to follow Ferret out duplication, and express each idea
“once and only once” Recognize missing or inadequately formed classes

Page 14/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
TechnologySimplify overly complex relationships between classes and their subclasses
Achieve the right balance of responsibilities among objects Make your code
easier to test and change Cope with incomplete library modules, and fix
runaway dependencies Learn the next steps to take after you refactor

Object-oriented programming (OOP) is the foundation of modern
programming languages, including C++, Java, C#, Visual Basic .NET,
Ruby, Objective-C, and Swift. Objects also form the basis for many web
technologies such as JavaScript, Python, and PHP. It is of vital importance
to learn the fundamental concepts of object orientation before starting to use
object-oriented development environments. OOP promotes good design
practices, code portability, and reuse–but it requires a shift in thinking to be
fully understood. Programmers new to OOP should resist the temptation to
jump directly into a particular programming language or a modeling
language, and instead first take the time to learn what author Matt Weisfeld
calls “the object-oriented thought process.” Written by a developer for
developers who want to improve their understanding of object-oriented
technologies, The Object-Oriented Thought Process provides a solutions-
oriented approach to object-oriented programming. Readers will learn to
understand the proper uses of inheritance and composition, the difference
between aggregation and association, and the important distinction between
interfaces and implementations. While programming technologies have
been changing and evolving over the years, object-oriented concepts
remain a constant–no matter what the platform. This revised edition focuses
on the OOP technologies that have survived the past 20 years and remain
at its core, with new and expanded coverage of design patterns, avoiding
dependencies, and the SOLID principles to help make software designs
understandable, flexible, and maintainable.

The practice of enterprise application development has benefited from the
emergence of many new enabling technologies. Multi-tiered object-oriented
platforms, such as Java and .NET, have become commonplace. These new
tools and technologies are capable of building powerful applications, but
they are not easily implemented. Common failures in enterprise applications
often occur because their developers do not understand the architectural
lessons that experienced object developers have learned. Patterns of
Enterprise Application Architecture is written in direct response to the stiff
challenges that face enterprise application developers. The author, noted
object-oriented designer Martin Fowler, noticed that despite changes in
technology--from Smalltalk to CORBA to Java to .NET--the same basic

Page 15/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologydesign ideas can be adapted and applied to solve common problems. With
the help of an expert group of contributors, Martin distills over forty recurring
solutions into patterns. The result is an indispensable handbook of solutions
that are applicable to any enterprise application platform. This book is
actually two books in one. The first section is a short tutorial on developing
enterprise applications, which you can read from start to finish to
understand the scope of the book's lessons. The next section, the bulk of
the book, is a detailed reference to the patterns themselves. Each pattern
provides usage and implementation information, as well as detailed code
examples in Java or C#. The entire book is also richly illustrated with UML
diagrams to further explain the concepts. Armed with this book, you will
have the knowledge necessary to make important architectural decisions
about building an enterprise application and the proven patterns for use
when building them. The topics covered include · Dividing an enterprise
application into layers · The major approaches to organizing business logic ·
An in-depth treatment of mapping between objects and relational databases
· Using Model-View-Controller to organize a Web presentation · Handling
concurrency for data that spans multiple transactions · Designing distributed
object interfaces

The only way to master a skill is to practice. In Python Workout, author
Reuven M. Lerner guides you through 50 carefully selected exercises that
invite you to flex your programming muscles. As you take on each new
challenge, you’ll build programming skill and confidence. Summary The only
way to master a skill is to practice. In Python Workout, author Reuven M.
Lerner guides you through 50 carefully selected exercises that invite you to
flex your programming muscles. As you take on each new challenge, you’ll
build programming skill and confidence. The thorough explanations help you
lock in what you’ve learned and apply it to your own projects. Along the way,
Python Workout provides over four hours of video instruction walking you
through the solutions to each exercise and dozens of additional exercises
for you to try on your own. Purchase of the print book includes a free eBook
in PDF, Kindle, and ePub formats from Manning Publications. About the
technology To become a champion Python programmer you need to work
out, building mental muscle with your hands on the keyboard. Each carefully
selected exercise in this unique book adds to your Python prowess—one
important skill at a time. About the book Python Workout presents 50
exercises that focus on key Python 3 features. In it, expert Python coach
Reuven Lerner guides you through a series of small projects, practicing the
skills you need to tackle everyday tasks. You’ll appreciate the clear

Page 16/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologyexplanations of each technique, and you can watch Reuven solve each
exercise in the accompanying videos. What's inside 50 hands-on exercises
and solutions Coverage of all Python data types Dozens more bonus
exercises for extra practice About the reader For readers with basic Python
knowledge. About the author Reuven M. Lerner teaches Python and data
science to companies around the world. Table of Contents 1 Numeric types
2 Strings 3 Lists and tuples 4 Dictionaries and sets 5 Files 6 Functions 7
Functional programming with comprehensions 8 Modules and packages 9
Objects 10 Iterators and generators

Writing for programmers and non-programmers alike, Harold explains how
to use refactoring to improve virtually any Web site or application, and
shows them how to refactor for better reliability, performance, usability,
security, accessibility, compatibility, and even search engine placement.

Printed in full color. Software development happens in your head. Not in an
editor, IDE, or designtool. You're well educated on how to work with
software and hardware, but what about wetware--our own brains? Learning
new skills and new technology is critical to your career, and it's all in your
head. In this book by Andy Hunt, you'll learn how our brains are wired, and
how to take advantage of your brain's architecture. You'll learn new tricks
and tipsto learn more, faster, and retain more of what you learn. You need a
pragmatic approach to thinking and learning. You need to Refactor Your
Wetware. Programmers have to learn constantly; not just the stereotypical
new technologies, but also the problem domain of the application, the whims
of the user community, the quirks of your teammates, the shifting sands of
the industry, and the evolving characteristics of the project itself as it is built.
We'll journey together through bits of cognitive and neuroscience, learning
and behavioral theory. You'll see some surprising aspects of how our brains
work, and how you can take advantage of the system to improve your own
learning and thinking skills. In this book you'll learn how to: Use the Dreyfus
Model of Skill Acquisition to become more expert Leverage the architecture
of the brain to strengthen different thinking modes Avoid common "known
bugs" in your mind Learn more deliberately and more effectively Manage
knowledge more efficiently

Awareness of design smells – indicators of common design problems –
helps developers or software engineers understand mistakes made while
designing, what design principles were overlooked or misapplied, and what
principles need to be applied properly to address those smells through

Page 17/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologyrefactoring. Developers and software engineers may "know" principles and
patterns, but are not aware of the "smells" that exist in their design because
of wrong or mis-application of principles or patterns. These smells tend to
contribute heavily to technical debt – further time owed to fix projects
thought to be complete – and need to be addressed via proper refactoring.
Refactoring for Software Design Smells presents 25 structural design
smells, their role in identifying design issues, and potential refactoring
solutions. Organized across common areas of software design, each smell
is presented with diagrams and examples illustrating the poor design
practices and the problems that result, creating a catalog of nuggets of
readily usable information that developers or engineers can apply in their
projects. The authors distill their research and experience as consultants
and trainers, providing insights that have been used to improve refactoring
and reduce the time and costs of managing software projects. Along the
way they recount anecdotes from actual projects on which the relevant smell
helped address a design issue. Contains a comprehensive catalog of 25
structural design smells (organized around four fundamental design
principles) that contribute to technical debt in software projects Presents a
unique naming scheme for smells that helps understand the cause of a
smell as well as points toward its potential refactoring Includes illustrative
examples that showcase the poor design practices underlying a smell and
the problems that result Covers pragmatic techniques for refactoring design
smells to manage technical debt and to create and maintain high-quality
software in practice Presents insightful anecdotes and case studies drawn
from the trenches of real-world projects

Refactoring has proven its value in a wide range of development
projects–helping software professionals improve system designs,
maintainability, extensibility, and performance. Now, for the first time,
leading agile methodologist Scott Ambler and renowned consultant
Pramodkumar Sadalage introduce powerful refactoring techniques
specifically designed for database systems. Ambler and Sadalage
demonstrate how small changes to table structures, data, stored
procedures, and triggers can significantly enhance virtually any database
design–without changing semantics. You’ll learn how to evolve database
schemas in step with source code–and become far more effective in
projects relying on iterative, agile methodologies. This comprehensive guide
and reference helps you overcome the practical obstacles to refactoring real-
world databases by covering every fundamental concept underlying
database refactoring. Using start-to-finish examples, the authors walk you

Page 18/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologythrough refactoring simple standalone database applications as well as
sophisticated multi-application scenarios. You’ll master every task involved
in refactoring database schemas, and discover best practices for deploying
refactorings in even the most complex production environments. The
second half of this book systematically covers five major categories of
database refactorings. You’ll learn how to use refactoring to enhance
database structure, data quality, and referential integrity; and how to
refactor both architectures and methods. This book provides an extensive
set of examples built with Oracle and Java and easily adaptable for other
languages, such as C#, C++, or VB.NET, and other databases, such as
DB2, SQL Server, MySQL, and Sybase. Using this book’s techniques and
examples, you can reduce waste, rework, risk, and cost–and build database
systems capable of evolving smoothly, far into the future.

Presents a process called "prefactoring," the premise of which states that
you're better off considering the best possible design patterns before you
even begin your projects. This book presents prefactoring guidelines in
design, code, and testing, derived from lessons learned by many developers
over the years.

Users can dramatically improve the design, performance, and manageability
of object-oriented code without altering its interfaces or behavior.
"Refactoring" shows users exactly how to spot the best opportunities for
refactoring and exactly how to do it, step by step.

The rules of battle for tracking down -- and eliminating -- hardware and
software bugs. When the pressure is on to root out an elusive software or
hardware glitch, what's needed is a cool head courtesy of a set of rules
guaranteed to work on any system, in any circumstance. Written in a frank
but engaging style, Debugging provides simple, foolproof principles
guaranteed to help find any bug quickly. This book makes those shelves of
application-specific debugging books (on C++, Perl, Java, etc.) obsolete. It
changes the way readers think about debugging, making those pesky
problems suddenly much easier to find and fix. Illustrating the rules with real-
life bug-detection war stories, the book shows readers how to: * Understand
the system: how perceiving the ""roadmap"" can hasten your journey * Quit
thinking and look: when hands-on investigation can't be avoided * Isolate
critical factors: why changing one element at a time can be an essential tool
* Keep an audit trail: how keeping a record of the debugging process can

Page 19/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologywin the day The rules of battle for tracking down -- and eliminating --
hardware and software bugs. When the pressure is on to root out an elusive
software or hardware glitch, what's needed is a cool head courtesy of a set
of rules guaranteed to work on any system, in any circumstance. Written in a
frank but engaging style, Debugging provides simple, foolproof principles
guaranteed to help find any bug quickly. This book makes those shelves of
application-specific debugging books (on C++, Perl, Java, etc.) obsolete. It
changes the way readers think about debugging, making those pesky
problems suddenly much easier to find and fix. Illustrating the rules with real-
life bug-detection war stories, the book shows readers how to: * Understand
the system: how perceiving the ""roadmap"" can hasten your journey * Quit
thinking and look: when hands-on investigation can't be avoided * Isolate
critical factors: why changing one element at a time can be an essential tool
* Keep an audit trail: how keeping a record of the debugging process can
win the day The rules of battle for tracking down -- and eliminating --
hardware and software bugs. When the pressure is on to root out an elusive
software or hardware glitch, what's needed is a cool head courtesy of a set
of rules guaranteed to work on any system, in any circumstance. Written in a
frank but engaging style, Debugging provides simple, foolproof principles
guaranteed to help find any bug quickly. This book makes those shelves of
application-specific debugging books (on C++, Perl, Java, etc.) obsolete. It
changes the way readers think about debugging, making those pesky
problems suddenly much easier to find and fix. Illustrating the rules with real-
life bug-detection war stories, the book shows readers how to: * Understand
the system: how perceiving the ""roadmap"" can hasten your journey * Quit
thinking and look: when hands-on investigation can't be avoided * Isolate
critical factors: why changing one element at a time can be an essential tool
* Keep an audit trail: how keeping a record of the debugging process can
win the day

Fully Revised and Updated–Includes New Refactorings and Code Examples
“Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.” —M. Fowler
(1999)For more than twenty years, experienced programmers worldwide
have relied on Martin Fowler’s Refactoring to improve the design of existing
code and to enhance software maintainability, as well as to make existing
code easier to understand. This eagerly awaited new edition has been fully
updated to reflect crucial changes in the programming landscape.
Refactoring, Second Edition, features an updated catalog of refactorings
and includes JavaScript code examples, as well as new functional

Page 20/21



Online Library Refactoring Improving The Design
Of Existing Code Addison Wesley Object
Technologyexamples that demonstrate refactoring without classes. Like the original,
this edition explains what refactoring is; why you should refactor; how to
recognize code that needs refactoring; and how to actually do it
successfully, no matter what language you use. Understand the process
and general principles of refactoring Quickly apply useful refactorings to
make a program easier to comprehend and change Recognize “bad smells”
in code that signal opportunities to refactor Explore the refactorings, each
with explanations, motivation, mechanics, and simple examples Build solid
tests for your refactorings Recognize tradeoffs and obstacles to refactoring
Includes free access to the canonical web edition, with even more
refactoring resources. (See inside the book for details about how to access
the web edition.)

Copyright code : ed4374a70e09aa34147d16636651e6fc

Copyright : librarygames.augamestudio.com

Page 21/21

/search-book/ed4374a70e09aa34147d16636651e6fc
http://librarygames.augamestudio.com

